
EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 1

EXPERIMENT NO. 6 - 7
6 ARITHMETIC OF SIGNED INTEGERS, DOUBLE

PRECISION, BCD AND FLOATING POINT
NUMBERS IN 8086

6.1 Objectives
The objectives of this experiment are

• Revisiting ADD, SUB, MUL, DIV instructions.

• To learn how to handle carry and borrow propagation using ADC and SBB
instructions.

• To get familiarized with arithmetic of signed integers using NEG, IMUL and IDIV
instructions.

• To learn arithmetic of double precision, BCD and floating point numbers.

6.2 Learning Outcome
At the end of the experiment the students will be able to

• Have an in-depth understanding of effects of different arithmetic instructions on
flags.

• Handle negative numbers for arithmetic operations.

• Perform arithmetic operations on numbers having more than 16bits.

• Perform arithmetic operations on BCD numbers.

6.3 New Instructions in this experiment

Part A Meaning

1 ADC Add with carry

2 SBB Subtract with borrow

Part B

3 NEG Negate

4 IMUL Integer multiplication

5 IDIV Integer division

6 CWD Convert word to double word

7 CBW Convert byte to word

Part C

8 AAA ASCII adjust for addition

9 AAS ASCII adjust for subtraction

10 AAM ASCII adjust for multiplication

11 AAD ASCII adjust for division

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 2

PART A: REVISITING ADD, SUB, MUL, DIV INSTRUCTIONS

6.4 Revisiting ADD, SUB, MUL, DIV instructions
You have already been familiarized with the instructions ADD, SUB, DIV, MUL. In case of
ADD and SUB instructions, the operands (source and destination) can be of either byte
form (8bit) or word form (16bit). For MUL instruction, the multiplier and multiplicand can
be both of either byte form or word form and the product is of either word form or
double word form (32bit). For DIV instruction, the dividend and divisor are of byte and
word forms respectively or double word and word form respectively. Table 1 briefly
revisits these four instructions with their effects on the carry flags.

Table 1(a): Revisiting ADD instruction

From Syntax Flag effected Sample Code

Byte ADD BYTE_DEST, BYTE_SOURCE C (carry) ADD BL, 5H

Word ADD WORD_DEST, WORD_SOURCE C (carry) ADD BX, DATA[5]

* WORD may be a AL, BL etc, or 8bit memory location.
* BYTE may be a AX, BX etc, or 16bit memory location.

Table 1(b): Revisiting SUB instruction

From Syntax Flag effected Sample Code

Byte SUB BYTE_DEST, BYTE_SOURCE C (borrow) SUB AL, BL

Word SUB WORD_DEST, WORD_SOURCE C (borrow) SUB DATA, 5H

Table 1(c): Revisiting MUL instruction
From Syntax Multiplier Multi

plica
nd

Product Sample
Code

Flags effected

Byte MUL BYTE_MULP BYTE_MULP AL AX MUL BL

CF/
OF

=0, if upper half
of ddthe
product is zero

=1, otherwise

Word MUL WORD_MULP WORD_MULP AX DX:AX MUL DAT_BYT

* CF/OF=1 means that the product is too big to fit in the lower half of the destination (AL for byte
00multiplication and AX for word multiplication)

* The effect of MUL on the SF, ZF are undefined.

Table 1(d): Revisiting DIV instruction

From Syntax Divisor Dividend Quotient Remainder Sample Code

Byte MUL BYTE_DIVR BYTE_DIVR AX AL AH DIV DATA_8BIT

Word MUL WORD_DIVR BYTE_DIVR DX:AX AX DX DIV BX

Divide overflow: It is possible that the quotient will be too big to fit in the specified
destination (AL or AX). This can happen if the divisor is much smaller than the dividend.
When this happened the program terminates and the system displays the message “Divide
Overflow”.

* The effect of DIV on the flags is that all status flags are undefined.

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 3

The following example illustrates the effects of MUL and DIV instruction on flags.

;EXAMPLE 1

;RUN THE CODE IN SINGLE STEP MODE

CODE SEGMENT

 ASSUME CS:CODE

;MULTIPLICATION IN WORD FORM

 MOV AX, 23h

 MOV BX, 25h

 XOR DX, DX

 MUL BX ;CHECK THE CARRY FLAG, OVERFLOW FLAG, ZERO FLAG

 MOV AX, 0FFFEH

 MOV BX, 0FF06H

 MOV DX, 0

 MUL BX ;CHECK THE CARRY FLAG, OVERFLOW FLAG, ZERO FLAG

;MULTIPLICATION IN BYTE FORM

 MOV AL, 9h

 MOV BL, 5h

 XOR AH, AH

 MUL BL ;CHECK THE CARRY FLAG, OVERFLOW FLAG, ZERO FLAG

 MOV AL, 0FFH

 MOV BL, 0A6H

 MOV AH, 0

 MUL BL ;CHECK THE CARRY FLAG, OVERFLOW FLAG, ZERO FLAG

;DIVISION IN WORD FORM

 MOV DX, 0FFF4H

 MOV AX, 0FFA4H

 MOV CX, 0FFH

 DIV CX ;CHECK THE REMAINDER AND QUOTIENT

;DIVISION IN BYTE FORM

 MOV AX, 0FAH

 DIV A ;CHECK THE REMAINDER AND QUOTIENT

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 4

;CHECK THE CARRY FLAG, OVERFLOW FLAG, ZERO FLAG, NOTE EFFECTS OF DIV ON
;FLAGS ARE UNDEFINED

 HLT

ORG 50H

A DB 0FH

CODE ENDS

 END

1 Can you perform the division FFFF FFFFh ÷ 5h using DIV instruction? Explain why
divide overflow occurs in this case?

Problem Set 6.4

2 If the result of a multiplication in word form is zero, how can you check it? Verify
your suggested method by writing an assembly code.

6.5 Handling carry and borrow in addition and subtraction
The instruction ADC (add with carry) adds the source operand and CF to destination,
and the instruction SBB (subtract with borrow) subtracts the source operand and CF
from the destination.

Table 2: Syntaxes and operations of ADC and SBB instructions

Syntax Operation

ADC destination, source destinationsource+destination+carry(CF)

SBB destination, source destinationdestination-source-borrow(CF)

6.6 Report (Part A)
Submit the solution of the problem set 6.4. Check the integrity of your codes by an
8086 emulator.

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 5

PART B: ARITHMETIC WITH SIGNED NUMBERS

6.7 Unsigned and Signed Integers

An unsigned integer is an integer that represents a magnitude, so it is never negative.
So far in this laboratory we have dealt with unsigned integers. A signed integer can be
positive or negative. In a signed integer the most significant bit is reserved for the sign:
1 means negative and 0 means.

For example,

If FFFFh is handled as an unsigned integer it will represent +65536 in decimal. On the
other hand, If FFFFh is handled as a signed integer it will represent -1 in decimal.

6.8 Obtaining Two’s Complement
The following syntax transfers the 2’s complement of a constant into the source.

MOV source, -constant

For example,

MOV AX, -4H

transfers the 2’s complement of 4 = FFFC to AX.

To negate (to obtain the 2’s complement of) the contents of register or a memory
location the NEG instruction can be used. The syntax is

NEG destination

The following example illustrates conversion on numbers to their two’s complements. For
each number, calculate the two’s complement in a scratch-paper and verify them with
the two’s complement calculated by 8086.

;EXAMPLE 2

CODE SEGMENT

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 6

 ASSUME CS:CODE

 MOV CX, 5

 MOV DI, 0

NEG_: MOV AX, [A+DI]

 NEG AX

 MOV [B+DI], AX

 ADD DI, 2

 LOOP NEG_

 HLT

ORG 050H

A DW 1H , 0FFFFH, 0F056H, 1056H, 4059H

ORG 060H

B DW ?, ?, ?, ?, ?

CODE ENDS

 END

1 Write a code to perform subtraction without using SUB instruction. One operand is
a register and another is a memory location.

Problem Set 6.7:

6.9 Signed Multiplication and Division

The instructions MUL and DIV handle unsigned numbers. To handle signed numbers,
two different instructions are used respectively. Their syntaxes are

IMUL multiplier

And

IDIV divisor

The following points for signed multiplication and division are to be noted:
1. For both the instructions all the operands the considered signed integers.
2. The product of signed multiplication is also a signed integer.
3. For signed division the remainder has the same sign as the dividend.

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 7

Both the instructions attributes are same for MUL and DIV instructions as depicted in
table 1(c) and 1(d) except that the effect of IMUL on status flag is a bit different.

CF/OF

=0, if upper half of the product is the sign extension of the lower half
(this means the bits of the upper half are the same as the sign bit og
the lower half)

=1, otherwise

The following examples illustrate the differences between MUL and IMUL.

Table 3: Examples for illustrating the differences of MUL and IMUL.

No. AX BX Instru
ction

Decimal
product

Hex product DX AX CF/OF

1 1h FFFFh MUL BX 65535 0000 FFFF 0000 FFFF 0

IMUL BX -1 FFFF FFFF FFFF FFFF 0

2 FFFFh FFFFh MUL BX 42948362
25

FFFE 0001 FFFE 0001 1

IMUL BX 1 0000 0001 0000 0001 0

3 0FFFh X MUL AX 16769025 00FF E001 00FF E001 1

IMUL AX 16769025 00FF E001 00FF E001 1

4 0100h FFFFh MUL BX 16776960 00FF FF00 00FF FF00 1

IMUL BX -256 FFFF FF00 FFFF FF00 0

The following examples illustrate the differences between DIV and IDIV.

Table 4: Examples for illustrating the differences of MUL and IMUL.

No. DX AX BX Instructi
on

Decimal
quotient

Decimal
Remainder

AX DX

1 0000h 0005h 0002h DIV BX 2 1 0002 0001

IDIV BX 2 1 0002 0001

2 0000h 0005h FFFEh DIV BX 0 5 0000 0005

IDIV BX -2 1 FFFE 0001

3 FFFFh FFFBh 0002h DIV BX Divide Overflow

IDIV BX -2 -1 FFFE FFFF

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 8

The following example illustrates the difference of IMUL and MUL instructions. Try to
explain why the results in of MUL and IMUL instructions are different.

;EXAMPLE 3

CODE SEGMENT

 ASSUME CS:CODE

 MOV AX,0FFFFH ; AX=FFFFh (UNSIGNED), -1 (SIGNED)

 MOV BX, -1H ; AX=FFFFh (UNSIGNED), -1 (SIGNED)

 PUSH AX

 ;MULTIPLICATION USING MUL

 XOR DX, DX

 MUL AX ; DX:AX= FFFF FE01h

 MOV PROD_MUL, DX

 MOV PROD_MUL+2, AX

 ;MULTIPLICATION USING IMUL

 POP AX

 XOR DX, DX

 IMUL AX ; DX:AX= 0000 0001h

 MOV PROD_IMUL, DX

 MOV PROD_IMUL+2, AX

 IMUL BX

 HLT

 ORG 050H

PROD_MUL DW ?, ?

 ORG 060H

PROD_IMUL DW ?, ?

CODE ENDS

 END

1 Run the following assembly code to find the square of the number stored in AX in
your microprocessor kit. Are the results obtained from IMUL and MUL equal? Explain
the similarity or differences in the results.

Problem Set 6.8

;EXAMPLE 4

CODE SEGMENT

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 9

 ASSUME CS:CODE

 MOV AX,0F056h

 PUSH AX

 ;MULTIPLICATION USING MUL

 XOR DX, DX

 MUL AX

 MOV SQ_MUL, DX

 MOV SQ_MUL+2, AX

 ;MULTIPLICATION USING IMUL

 POP AX

 XOR DX, DX

 IMUL AX

 MOV SQ_IMUL, DX

 MOV SQ_IMUL+2, AX

 HLT

 ORG 050H

SQ_MUL DW ?, ?

 ORG 060H

SQ_IMUL DW ?, ?

CODE ENDS

 END

6.10 CWD Instruction

CWD stands for convert word to double word. When using IDIV, DX should be made the
sign extention of AX. CWD will do this extension.

For example,

MOV AX, -1250 ;AX = FB1Eh

CWD

will make DX sign extension of AX, so that DX:AX = FFFF FB1E h.

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 10

In the following example it is intended to calculate the -4010d÷7d. Try to explain why
the result is not correct when sign extension to DX is not performed.

;EXAMPLE 5

CODE SEGMENT

 ASSUME CS:CODE

 MOV AX, -4010D

 MOV BX, 7D

 PUSH AX

 ;CASE 1: DIVISION USING DIV

 XOR DX, DX

 DIV BX

 MOV Q_DIV, AX

 MOV R_DIV, DX

 ;CASE 2: DIVISION USING IDIV WITHOUT SIGN EXTENSION TO DX

 POP AX

 PUSH AX

 XOR DX, DX

 IDIV BX

 MOV Q_IDIV1, AX

 MOV R_IDIV1, DX

 ;CASE 3: DIVISION USING IDIV WITH SIGN EXTENTION TO DX

 POP AX

 CWD

 IDIV BX

 MOV Q_IDIV2, AX

 MOV R_IDIV2, DX

 HLT

 ORG 050H

Q_DIV DW ?

R_DIV DW ?

 ORG 060H

Q_IDIV1 DW ?

R_IDIV1 DW ?

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 11

 ORG 070H

Q_IDIV2 DW ?

R_IDIV2 DW ?

CODE ENDS

 END

1 Consider example 3 in table 4. Explain why divide overflow occurs for DIV
instruction, while not for IDIV instruction.

Problem Set 6.9

2 If your intended division is 105Fh÷Fh which cases will give the correct result?
Which case(s) will give the correct result when the intended division is F0FFh÷Ch?

3 The equivalent of CWD for integer division in byte form is CBW (Convert byte to
word). Write an assembly code perform a integer division (IDIV) in byte form.

4 Now try the division of AX by BL with AX=00FBh and BL=FFh. Determine for which
of the instructions (IDIV and DIV) divide overflow occurs and explain?

6.11 Report (Part B)
Submit the solution of the problem sets, 6.7, 6.8, 6.9. Check the integrity of your
codes by an 8086 emulator.

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 12

PART C: Arithmetic with Double Precision Numbers, BCD Numbers and Floating
Point Numbers

6.12 Introducing Double-Precision Numbers

Numbers stored in the 8086 based microprocessors can be 8 or 16-bit numbers. Even for
16-bit numbers, the range is limited to 0 to 65535 for unsigned numbers and -32768 to
+327678 for signed numbers. TO extend this range, a common technique is to use 2
words for each number. Such numbers are called double-precision numbers and he
range here is 0 to 232-1 or 4,294,967,295 for unsigned and -2,147,483,648 to -
2,147,483,648 for signed numbers.

 A double-precision number may occupy two registers or two memory words. For
example, if a 32-bit number is stored in the two memory words A and A+2, written
A+2:A, then the upper 16 bits are in A+2 and the lower 16 bits are in A. If the number is
signed, then the msb of A+2 is the sign bit. Negative numbers are represented in two’s
complement form.

6.13 Addition, Subtraction & Negation of Double-Precision Numbers

To add or subtract two 32 bit numbers, we first add or subtract the lower 16 bits and
then add or subtract the higher 16 bits. In case of addition, carry generated in the
addition of the lower 16 bit numbers must be added to the sum of the higher 16 bit,
which can be done by ADC instruction. Similarly in case of subtraction, borrow
generated in the subtraction of the lower 16 bit numbers must be subtracted from the
subtracted result of the higher 16 bit, which can be done by SBB instruction. The
following numerical example illustrates addition of double precision numbers, FFFF FA11h
and 0A12 1001.

Carry from

higher 16 bits

Higher 16 bit Carry from
lower 16 bits

Lower 16
bit

 FFFF FA11

 +0A12 +1001

1 0A11 1 0A12

 +1

1 0A12 0A12

Hence the final result of addition in 10A120A12.

Hence the algorithm for addition of A+2:A and B+2:B can be shown as below:

1. AXA, BXB
2. CAB+BX

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 13

3. AXA+2, BXB+2
4. C+2AX+BX+C(Carry)

 The following example illustrates double-precision addition and subtraction.

;EXAMPLE 6

; DOUBLE PRECISION ADDITION AND SUBTRACTION

; C+4:C+2:C = A+2:A + B+2:B

; D+2:D = A+2:A - B+2:B

CODE SEGMENT

ASSUME CS:CODE,DS:CODE

 MOV AX, A

 MOV BX, B

 ADD AX, BX

 MOV C, AX

 MOV AX, A+2

 MOV BX, B+2

 ADC AX, BX

 MOV C+2, AX

 ADC C+4, 0

 MOV AX, A

 MOV BX, B

 SUB AX, BX

 MOV D, AX

 MOV AX, A+2

 MOV BX, B+2

 SBB AX, BX

 MOV D+2, AX

 HLT

ORG 0050H

A DW 0F056H, 4509H

ORG 0060H

B DW 1056H, 1509H

ORG 0070H

C DW ?,?, ?

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 14

ORG 0080H

D DW ?,?

CODE ENDS

 END

1 Write the assembly code to perform addition of a 32 bit number and a 48 bit
number.

Problem Set 6.11

2* Write the assembly code to perform addition of two 80 bit numbers invoking a
procedure. (Use CALL, RET instructions.)

3 Explain how the following instructions form the negation of A+2:A.
NOT A+2

NOT A

INC A

ADC A+2, 0

 Can you negate A+2:A using NEG instruction?

6.14 Multiplication of Double-Precision Numbers

The following example illustrates the multiplication of a double precision number, A+2:A
with a contents of the register BX. The algorithm for multiplication in shown symbolically
in figure 1. The product is stored in C.

 BX

× A+2: A

 P2 :AX

 Q2: Q1 xx

 Q2+Carry: P2+Q1:C

 (=C+4) (=C+2)

Figure 1: Symbolical representation of algorithm for Multiplication of B and A+2:A

From figure 1 the algorithm is generated are presented below:

1. AXA
2. DX:AXAX×BX
3. CAX
4. TEMPDX
5. AXA+2
6. DX:AX AX×BX

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 15

7. AXAX+TEMP
8. C+2AX
9. DXDX+C (Carry)
10. C+4DX

;EXAMPLE 7

; DOUBLE PRECISION MULTIPLICATION

; C+4:C+2:C=BX x A+2:A

CODE SEGMENT

 ASSUME CS:CODE,DS:CODE

ORG 0100H

MOV BX, 0E56FH

XOR DX, DX

MOV AX, A ;STEP 1

MUL BX ;STEP 2

MOV C, AX ;STEP 3

MOV TEMP, DX ;STEP 4

MOV AX, A+2 ;STEP 5

MUL BX ;STEP 6

ADD AX, TEMP ;STEP 7

MOV C+2, AX ;STEP 8

ADC DX, 0 ;STEP 9

MOV C+4, DX ;STEP 10

HLT

ORG 0150H

A DW 0F056H, 4509H

ORG 0160H

C DW ?, ?,?

TEMP DW ?

CODE ENDS

 END

1 Write the assembly code to perform multiplication of two 32 bit numbers.

Problem Set 6.12

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 16

6.15 Division of a 48-bit number by a 16-bit number

The algorithm for performing A+4:A+2:A÷BX division is stated below:

1. DX:AXA+4:A+2
2. Quotient AX, Remainder DXDX:AX÷BX
3. Q+2AX
4. AXA
5. Quotient AX, Remainder DXDX:AX÷BX
6. QAX, RDX

The following code performs a division of 48-bit number by a 16-bit number.

; EXAMPLE 8

;THIS EXAMPLE PERFORMS A 48 BIT NUMBER BY 16 BIT NUMBER DIVISION

;Q+2:Q=A+4:A+2:A/BX, R = REMAINDER

CODE SEGMENT

 ASSUME CS:CODE,DS:CODE

 MOV BX, 0F015H

 MOV DX, A+4

 MOV AX, A+2

 DIV BX

 MOV Q+2, AX

 MOV AX, A

 DIV BX

 MOV Q, AX

 MOV R, DX

 HLT

ORG 50H

A DW 1536H, 4563H, 1234H

ORG 60H

Q DW ?, ?

ORG 70H

R DW ?

CODE ENDS

END

1 Write an assembly program to perform a 64 bit by 16 bit division.

Problem Set 6.13

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 17

2* Can you extend this algorithm to perform a 48 bit by 32 bit division by using DIV
instruction? If not, why?

6.16 BCD Arithmetic

The BCD (binary coded decimal) number system uses four bits to code each decimal
digit, from 0000 to 1001. The combinations 1010 to 1111 are illegal in BCD.

Since only 4 bits are required to represent a BCD, two digits can be placed in a byte.
This is known as packed BCD form. In unpacked BCD form, only one digit is contained in
a byte. The 8086 has addition and multiplication instructions to perform with both forms,
but for multiplication and division, the digits must be unpacked.

6.17 BCD Addition
In BCD addition, we perform the addition on one digit at a time. Let us consider the
addition of the BCD numbers contained in AL and BL. When addition performed using
ADD instruction, it is possible to obtain a non-BCD result. For example if AL= 6d and
BL=7d, the sum of 13 is in AL which is no longer a valid BCD digit. To adjust it is
required to subtract 10 from AL and place 1 in AH, then AX will contain the correct sum.

AH 0000 0000 AL 0000 0110

 BL + 0000 0111

 AL 0000 1101

 + 1 - 0000 1010

AH 0000 0001 AL 0000 0011

This adjustment is performed in 8086 if we add the instruction AAA (ASCII Adjust for
addition).

For example, the following assembly code performs decimal addition on the unpacked
BCD numbers in AL and BL.

MOV AH, 0

ADD AL, BL

AAA

Example 9 performs the addition of two two-digit numbers stored in A+1:A and B+1:B.

;Example 9

;ADDITION OF TWO TWO-DIGIT NUMBERS

;C+2:C+1:C = A+1:A + B+1:B

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 18

CODE SEGMENT

 ASSUME CS:CODE,DS:CODE

ORG 0100H

XOR AH, AH

MOV AL, A

ADD AL, B

AAA

MOV C, AL

MOV AL, AH

ADD AL, A+1

ADD AL, B+1

MOV AH, 0

AAA

MOV C+1, AL

MOV C+2, AH

HLT

ORG 0150H

A DB 7, 9 ;A+1:A=09 07

B DB 5, 6 ;B+1:B=06 05

 ORG 0160H

C DB ?, ?, ?

CODE ENDS

 END

6.18 BCD Subtraction

As in BCD addition, BCD subtraction is also performed on one digit at a time. Let us
consider the subtraction of the BCD numbers contained in AL and BL. When subtraction
performed using SUB instruction, it is possible to obtain a non-BCD result. For example
to subtract 26 from 7, we put AH=2, AL= 6, BL = 7. After subtracting BL from AL, we
obtain a incorrect result in AL. To adjust it is required to subtract 6 from AL, clear high
nibble (most significant 4 bits) and subtract 1 from AH, then AX will contain the correct
sum.

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 19

AH 0000 0010 AL 0000 0110

 BL - 0000 0111

 0000 0010 AL 1111 1111

 1 1 - 0000 0110

AH 0000 0001 AL 0000 1001

This adjustment is performed in 8086 if we add the instruction AAS (ASCII Adjust for
subtraction) after subtraction. The usage of AAS is shown below.

MOV AH, 0

SUB AL, BL

AAS

1* Write down the code to subtract the two-digit number in bytes B+1:B from the
one contained in A+1:A.

Problem Set 6.16

6.19 BCD Multiplication

Let us consider an example of single digit BCD multiplication. To multiply 7 and 9, we
put 7 in AL and 9 in BL. After multiplying them using MUL instruction, AH will contain 00
3Fh= 63d. To convert the content in AX to 06 03, the instruction AAM (ASCII
adjustment for multiplication) should follow. The usage of AAM for BCD multiplication is
shown below.

MUL BL

AAM

The following example illustrates the effect AAM on AX and performs a single digit BCD
multiplication. Run the code in single step mode.

;EXAMPLE 10

CODE SEGMENT

 ASSUME CS:CODE,DS:CODE

;OBSERVE THE EFFECTS OF AAM ON THE CONTENTS IN AX IN SINGLE
;STEP MODE

MOV AX, 97H

AAM

MOV AX, 97D

AAM

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 20

MOV AX, 9804H

AAM

MOV AL, 9D

MOV BL, 8D

MUL BL

AAM

 HLT

CODE ENDS

 END

6.20 BCD Division

Let us consider an example of division of a two digit BCD number by a single digit BCD
number. To multiply divide 97 and 9, we put 0907 in AX and 9 in BL. Before dividing
using DIV, the contents in AH is changed from 0907 to 97d=61h by AAD (ASCII adjust
for division). After ordinary binary division, AAM instruction must follow to convert the
contents to BCD format. The following example shows a BCD division.

The following example illustrates a BCD division. Run the code in single step mode.

;EXAMPLE 11

;BCD DIVISION

;95 BY 8

; Q=QUOTIENT, R=REMAINDER

CODE SEGMENT

 ASSUME CS:CODE,DS:CODE

MOV AL, 05

MOV AH, 09 ;AX CONTAINS DIVIDEND BCD 95

MOV BL, 8 ;BL CONTAINS DIVISOR BCD 8

AAD

DIV BL

MOV R, AH

AAM ; CONVERTING THE QUOTIENT TO BCD FORMAT

MOV Q, AL

MOV Q+1, AH

 HLT

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 21

Q DB ?, ?

R DB ?

CODE ENDS

 END

1 Write down the code to perform a multiplication of a 2 digit BCD number by a
single digit BCD number.

Problem Set 6.17

2 Write down the code to perform a division of a 3 digit BCD number by a 1 digit
BCD number.

6.21 Introducing Floating-Point Numbers

In floating representation, each number is represented in two parts, a mantissa, which
contains the loading significant bits in a numbers and an exponent, which is used to
adjust the position of the binary point.

For example,

100000000b can be represented as 1× 28; hence in floating point representation, it has
mantissa 1 and exponent 8.

0.0001b can be represented as 1× 2-4; hence in floating point representation, it has
mantissa 1 and exponent -4.

Floating-point numbers are convenient for handling numbers, some which are very large
and some are fraction. Example 12 illustrates how floating point representation can
perform the multiplication of two numbers one very large and another fraction.

;EXAMPLE 12

;MULTIPLICATION OF TWO NUMBERS IN FLOATING POINT REPRESENTATION

;A = 8000 0000 0000h = 8x16^(C)

;B = 0.0000 0000 00F0h = Fx16^(-B)

;C=AxB

CODE SEGMENT

 ASSUME CS:CODE,DS:CODE

ORG 0100H

MOV AX, A

MUL B

EEE316: MICROPROCESSOR AND INTERFACING LABORATORY
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Asif Islam Khan & Dr. Kazi Mujibur Rahman, June 19, 2007 22

MOV C, AX

MOV AX, A+2

ADD AX, B+2

MOV C+2, AX

HLT

ORG 0150H

A DW 8H, 0CH ;A = MANTISSA, A+2 = EXPONENT

B DW 0FH, -0BH ;B = MANTISSA, B+2 = EXPONENT

 ORG 0160H

C DW ?, ? ;C = MANTISSA, C+2 = EXPONENT

CODE ENDS

 END

6.22 Report (Part C)
Submit the solution of the problem sets, 6.11, 6.12, 6.13, 6.16, 6.17. Check the
integrity of your codes by an 8086 emulator.

6.23 References
Ytha Yu, Charles Marut, Assembly Language Programming and Organization of the
IBM PC, Mitchell McGraw-Hill, 1992.

 Chapter 4: Introduction to IBM PC and Assembly Language (Part A)

 Chapter 9: Multiplication and Division Instructions (Part B)

 Chapter 18: Advanced Arithmetic (Part C)

	EXPERIMENT NO. 6 - 7
	6 ARITHMETIC OF SIGNED INTEGERS, DOUBLE PRECISION, BCD AND FLOATING POINT NUMBERS IN 8086
	6.1 Objectives
	6.2 Learning Outcome
	6.3 New Instructions in this experiment
	6.4 Revisiting ADD, SUB, MUL, DIV instructions
	6.5 Handling carry and borrow in addition and subtraction
	6.6 Report (Part A)
	6.7 Unsigned and Signed Integers
	6.8 Obtaining Two’s Complement
	6.9 Signed Multiplication and Division
	6.10 CWD Instruction
	6.11 Report (Part B)
	6.12 Introducing Double-Precision Numbers
	6.13 Addition, Subtraction & Negation of Double-Precision Numbers
	6.14 Multiplication of Double-Precision Numbers
	6.15 Division of a 48-bit number by a 16-bit number
	6.16 BCD Arithmetic
	6.17 BCD Addition
	6.18 BCD Subtraction
	6.19 BCD Multiplication
	6.20 BCD Division
	6.21 Introducing Floating-Point Numbers
	6.22 Report (Part C)
	6.23 References

