
MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 1

8 I/O Device Interface to 8086 Microprocessor
Stepping Motor Control and FND Display

8.1 Objective
The objectives of this experiment are

• Familiarization with a programmable peripheral interface device, 8255

• Use of 8255 PPI for controlling external devices

• Controlling a stepper motor through peripheral devices connected to 8086
microprocessor

• Controlling a seven segment LED display unit

8.2 Learning Outcome
At the end of the experiment the students will be enable to

• Configure 8255 PPI for controlling its I/O ports

• Learn how to write assembly program related to accessing I/O devices and
control of actuators

• Control a stepper motor in various modes using a microprocessor trainer

• Interface seven segment LED display

8.3 Introduction
The stepping motor is a device which can transfer the incoming pulses to stepping
motion of a predetermined angular displacement. By using suitable control circuitry, the
angular displacement can be made proportional to the number of pulses. Using
microcomputer, one can have better control of the angular displacement resolution and
angular speed of a stepping motor. Stepping motors are suitable for translating digital
inputs into mechanical motion. In general, there are three types of stepping motor:

VR (Variable Reluctance) stepping motors

Hybrid stepping motors

PM (Permanent Magnet) stepping motors

8.4 Theory of operation
Stepper motors operate differently from normal DC motors, which simply spin when
voltage is applied to their terminals. Stepper motors, on the other hand, effectively have
multiple "toothed" electromagnets arranged around a central metal gear, as shown in
Fig. 8.1.

Fig. 8.1 Toothed stepper motor and state of motion at different coil excitation.

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 2

Fig. 8.2 Unipolar 4-Phase (or bipolar 2 phase) stepper motor having six terminals

To make the motor shaft turn, first one electromagnet is given power, which makes the
gear's teeth magnetically attracted to the electromagnet's teeth. When the gear's teeth
are thus aligned to the first electromagnet, they are slightly offset from the next
electromagnet. So, when the next electromagnet is turned on and the first is turned off,
the gear rotates slightly to align with the next one, and from there the process is
repeated. Each of those slight rotations is called a "step." In that way, the motor can be
turned a precise angle. There are two basic arrangements for the electromagnetic coils:
bipolar and unipolar. We will experiment on a unipolar 4-phase six wire stepper motor.

The step angle for each step depends on the number of teethes on the rotor and pole
faces. Stepper motors are mostly Hybrid type. In this experiment we will use a hybrid
stepper motor with full step angle of 1.80 and half step angle of 0.90.

Table 8.1 Comparison stepping motor characteristics

Characteristics
Motor type

PM VR Hybrid

Efficiency High Low High

Rotor Inertia High Low Low

Speed High High Low

Torque Fair Low High

Power O/P High Low Low

Damping Good Poor Poor

Typical 1.8° 7.5° 0.18°

Step 15° 15° 0.45°

Angle 30° 30°

Commercial stepping motor uses multimotor rotor, the rotor features two bearlike PM
cylinders that are turned one-half of tooth spacing. One gear is south pole, the other
gear is north pole. If a 50-tooth rotor gear is used, the following movement sequences
will proceed.

8.4.1 Single-phase excitation

The stepping position will be 00,1.80, 3.60, 358.20, total 200 steps in one round.

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 3

Table 8.2 Full step truth table (One coil excitation)

Full Step Motion  Single coil excitation

STEP B2 (Coil 4) A2 (Coil 3) B1 (Coil 2) A1 (Coil 1) Byte Forward Reverse

1X 0 0 0 1 1

2X 0 0 1 0 2

3X 0 1 0 0 4

4X 1 0 0 0 8

8.4.2 Two-phase excitation

The stepping positions will be 0.90, 2.70, 4.50, 359.10, total 200 steps in one round.

Table 8.3 Full step truth table (two coil excitation)

Full Step Motion  Two coil excitation

STEP B2 (Coil 4) A2 (Coil 3) B1 (Coil 2) A1 (Coil 1) Byte Forward Reverse

1Y 0 0 1 1 3

2Y 0 1 1 0 6

3Y 1 1 0 0 12

4Y 1 0 0 1 9

8.4.3 Single-phase and two-phase excitations combined

The stepping positions will be 00, 0.90, 1.80, 2.70, 3.60, 4.50,358.20, 359.10,
total 400 steps in one round. Since stepping motor makes step-by-step movement and
each step is equidistant, the rotor and stator magnetic field must be synchronous.
During start-up and stopping, the two fields may not be synchronous, so it is suggested
to slowly accelerate and decelerate the stepping motor during the start-up or stopping
period.

Table 8.4 Truth table for operating a stepper motor in wave motion (Half step operation)

Wave (half Step) Motion  One coil excitation followed by Two coil excitation

STEP B2 (Coil 4) A2 (Coil 3) B1 (Coil 2) A1 (Coil 1) Byte Forward Reverse

1X 0 0 0 1 1

1Y 0 0 1 1 3

2X 0 0 1 0 2

2Y 0 1 1 0 6

3X 0 1 0 0 4

3Y 1 1 0 0 12

4X 1 0 0 0 8

4Y 1 0 0 1 9

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 4

8.4.4 Hardware Interface

To run a stepper motor from a microprocessor trainer (microcomputer), we need a
parallel port interface. Here we will be using Intel 8255 PPI (programmable peripheral
interface) that has three 8-bit ports configurable in few modes. The 8255 has one control
port where one can send the control word for configuring the 8255 ports (For details see
8255 data sheet). In this application, one port of 8255 should be configured as output
port for stepper motor control signals to pass through. In MDA8086 trainer, the stepper
motor interface is built in the motherboard, as shown in Figs. 8-1, 8-2. Upper 4-bits of
Port B of the odd addressed 8255 are connected to the stepper motor circuitry. The
signal mappings of the port lines are as follows:

Table 8.5 Stepper motor signals and power interface connector details.

Port Bit Phase Terminal Connector P10

PB4 Coil A1 1

PB5 Coil B1 4

PB6 Coil A2 3

PB7 Coil B2 6

- TAPA 2

- TAPB 5

Fig. 8.3 Stepping motor interface through odd addressed 8255 in MDA8086.

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 5

Fig. 8.4 Stepping motor power interface in MDA8086.

8.5 Experimentation with a Stepper Motor
A stepper motor can be operated in Full-step or Half-step mode in Forward/Reverse
direction as shown in Tables 8.2, 8.3 and 8.4. In any case the next move depends on the
present state (position) of the motor. The basic connection scheme of a stepper motor to
a drive circuit is shown in Fig. 8.5. In MDA8086 trainer the drive circuitry is built in the
motherboard along with the anti-parallel diodes. Only the motor coils are to be
connected to the trainer terminal.

Fig. 8.5 Basic stepper motor drive circuit

8.5.1 Equipment List

• 4-Phase, 6-wire unipolar stepper motor, 12V 1 no.

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 6

• MDA8086 Trainer 1 no.

• Personal Computer with a COM port 1 no.

8.5.2 Experimental Procedures

8.5.2.1 Test RUN #1

Step 1. Plug in the stepper motor into the socket of MDA8086 trainer

Step 2. Run WINDOWS editor “EDIT.COM”

Step 3. Type the assembly program given in section 8.4

Step 4. Save it using a file name STEPMO.ASM

Step 5. Close the text editor.

Step 6. Go to the command prompt C:\ (start All Programs  Accessories 
Command Prompt)

Step 7. Assemble the STEPMO.ASM file (C:\UP_LAB\MASM STEPMO STEPMO.OBJ
STEPMO.LST NULL.CRF)

Step 8. Run the loader program to make the HEX (ABS) file (C:\UP_LAB\LOD186
STEPMO.OBJ STEPMO.ABS NULL.MAP)

Step 9. To save time steps 8 and 9 can be avoided by running the A.BAT file (C:\ A
STEPMO). This will make the STEPMO.ABS file like this

:14100000B800008ED8B080E61FB0FFE619B000E61DB0EEE6A4
:121014001BE80400D0C0EBF7B9000090909090E2FAC3B9
:00000001FF

Step 10. Run “WinComm” from WINDOWS

Step 11. Push the RESET button of MDA8086 Trainer

Step 12. Type L in the “WinComm” command window and press ENTER button of PC
keyboard

Step 13. Press “PgUp” button on the PC keyboard

Step 14. Browse and select the STEPMO.ABS file from the C:\UP_LAB folder and
press ENTER

Step 15. The STEPMO.ABS will be loaded into the MDA8086 Trainer kit at location
0000:1000H

Step 16. Type G in the “WinComm” window command prompt and press ENTER
button

Step 17. The stepper will start running

Step 18. Note down the stepping angle, step time and step directions.

8.5.2.2 Test RUN #2

Step 1. Open the text editor.

Step 2. Change the delay time in PROG1, set the counter CX to 1000H, (MOV CX,
1000H) and save the assembly program.

Step 3. Following the procedures given in section 8.3.2.1, run the stepper motor.

Step 4. Adjust the CX value so that the stepper motor takes 10 seconds to have a
complete 3600 rotation.

Step 5. Replace the instruction “ROL AL, 1” with “ROR AL, 1” and RUN the program.

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 7

Step 6. Note down the motion direction.

8.5.2.3 Test RUN #3

Step 1. Open the text editor.

Step 2. Write the assembly program PROG2 given in section 8.4.2 and save it with a
filename STEPMO1.ASM.

Step 3. Make STEPMO1.ABS file using the MASM and LOD186 utilities.

Step 4. Download the STEPMO1.ABS file into the MDA8086 trainer and run the
program.

Step 5. Note down the step sizes, direction and time taken to complete 3600
rotation.

Step 6. Adjust the count value in CX of PROG2 so that the motor takes 10 seconds
for a complete 3600 rotation.

Step 7. Modify the assembly program to change the direction of rotation (Change
the following lines

MOV BL, 11001100B  MOV BL, 01100110B

ROL AL,1  ROR AL,1

Step 8. Note down the time taken by the motor to complete 3600 rotation.

8.5.3 Assembly Program

8.5.3.1 Running a stepper motor in Full-Steps

;**

;**
; PROG1
; Odd addressed 8255 used
; Port B (upper 4-lines, PB4-PB7) is connected to the Stepping Motor Interface
; PB4  Coil 1 (A)
; PB5  Coil 1 (B)
; PB6  Coil 2 (A)
; PB7  Coil 2 (B)
; To energize a coil the corresponding bit on PB should be active LOW

;**
CODE SEGMENT
 ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE
PORT_CON EQU 1FH ; Control Port 8-bit Address
PORTC EQU 1DH ; Port C 8-bit Address
PORTB EQU 1BH ; Port B 8-bit Address
PORTA EQU 19H ; Port A 8-bit Address
 ;
 ORG 1000H ; Program Effective Address, IP = 1000H
 ;
 MOV AX, 0
 MOV DS, AX ; Initialize Data Segment register DS to 0000H
 ;
 MOV AL, 10000000B ; Configure all ports of 8255 as output
 OUT PORT_CON, AL
 ;
 MOV AL, 11111111B ; Can write 0FFH as well
 OUT PORTA, AL ; All pins of Port A to HIGH
 MOV AL, 00000000B
 OUT PORTC, AL ; All pins of Port C to LOW

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 8

 ;
 MOV AL, 11101110B ; Only one coil to be energized at a time
L1: OUT PORTB, AL
 CALL DELAY ; Call DELAY subroutine
 ROL AL, 1 ; Rotate AL left by 1 bit
 JMP L1
;
; Subroutine of DELAY
DELAY: MOV CX, 0 ; Similar to loading CX by FFFFH
AGAIN: NOP
 NOP ; Dummy instructions to cause time delay
 NOP
 NOP
 LOOP AGAIN
 RET ; Return from subroutine call
 ;
CODE ENDS ; End of Subroutine DELAY
 END ; End of Assembly Program
;***

8.5.3.2 Running a stepper motor in Half-Steps

;**

;**
; PROG2
; Odd addressed 8255 used
; Port B (upper 4-lines, PB4-PB7) is connected to the Stepping Motor Interface
; PB4  Coil 1 (A)
; PB5  Coil 1 (B)
; PB6  Coil 2 (A)
; PB7  Coil 2 (B)
; To energize a coil the corresponding bit on PB should be active LOW

;**
CODE SEGMENT
 ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE
PORT_CON EQU 1FH ; Control Port 8-bit Address
PORTC EQU 1DH ; Port C 8-bit Address
PORTB EQU 1BH ; Port B 8-bit Address
PORTA EQU 19H ; Port A 8-bit Address
 ;
 ORG 1000H ; Program Effective Address, IP = 1000H
 ;
 MOV AX, 0
 MOV DS, AX ; Initialize Data Segment register DS to 0000H
 ;
 MOV AL, 10000000B ; Configure all ports of 8255 as output
 OUT PORT_CON, AL
 ;
 MOV AL, 11111111B ; Can write 0FFH as well
 OUT PORTA, AL ; All pins of Port A to HIGH
 MOV AL, 00000000B
 OUT PORTC, AL ; All pins of Port C to LOW
 ;
 MOV AL, 11101110B ; One phase energized at a time
 MOV BL, 11001100B ; Two phases energized at a time
 ;
L1: OUT PORTB, AL ; Send signal to port
 CALL DELAY ; Call DELAY subroutine
 ROL AL, 1 ; Rotate AL left by 1 bit
 XCHG AL, BL ; Exchange AL and BL contents

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 9

 JMP L1
;
; Subroutine of DELAY
DELAY: MOV CX, 2000H ; Similar to loading CX by FFFFH
AGAIN: NOP
 NOP ; Dummy instructions to cause time delay
 NOP
 NOP
 LOOP AGAIN
 RET ; Return from subroutine call
 ;
CODE ENDS ; End of Subroutine DELAY
 END ; End of Assembly Program
;***

8.6 Experimentation with Seven Segment Display (FND)
It is often required to interface seven segment displays with a microprocessor system. In
MDA8086 trainer there is a single seven segment LED display interface called FND. The
FND display is driven from Port A of odd addressed 8255. The segment assignments to
the FND display are PA0-PA6  a-g, and PA7  dot point p.

Fig. 8.6 FND interface to MDA8086 trainer.

8.6.1 Experiment Procedure

Step 1. Open the text editor and write the assembly program PROG3 given in
section 8.6.2.

Step 2. Make the ABS file, download it to MDA8086 trainer and run it.

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 10

Step 3. Note down the observations in the FND display.

Step 4. Change the delay time appropriately so that the display changes ever 1
second.

8.6.2 Assembly Program for FND

;**

;**
; PROG3
; Odd addressed 8255 used
; Port A lines, PA0-PA7 are connected to the FND display
; To energize an FND segment the corresponding bit on PA should be active LOW

;**
CODE SEGMENT
 ASSUME CS:CODE,DS:CODE,ES:CODE,SS:CODE
PORT_CON EQU 1FH ; Control Port 8-bit Address
PORTC EQU 1DH ; Port C 8-bit Address
PORTB EQU 1BH ; Port B 8-bit Address
PORTA EQU 19H ; Port A 8-bit Address
 ;
 ORG 1000H ; Program Effective Address, IP = 1000H
 ;
 MOV AX, CS
 MOV DS, AX ; CS = DS
 ;
 MOV AL, 10000000B ; Configure all ports of 8255 as output
 OUT PORT_CON, AL
 ;
L1: MOV BL, 16 ; Setup number
 MOV SI, OFFSET FONT ; Setup address of font
L2: MOV AL, [SI] ; Transfer font data
 OUT PORTA, AL ; Output data
 MOV CX, 0B000H ; Delay
 LOOP $
 INC SI ; Font address + 1

DEC BL ; Next digit
JNZ L2
JMP L1

; Dgfedcba ; Segment Display

FONT DB 11000000B ; 0
 DB 11111001B ; 1
 DB 10100100B ; 2
 DB 10110000B ; 3
 DB 10011001B ; 4
 DB 10010010B ; 5
 DB 10000010B ; 6
 DB 11011000B ; 7
 DB 10000000B ; 8
 DB 10010000B ; 9
 DB 100010000B ; A
 DB 10000011B ; B
 DB 11000110B ; C
 DB 10100001B ; D
 DB 10000110B ; E
 DB 11000000B ; F
 ;
CODE ENDS
 END ; End of Assembly Program

MICROPROCESSOR AND INTERFACING LAB
DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING, BUET

© Dr. Kazi Mujibur Rahman, June 16, 2007 11

;**

8.7 Report
1. In the report, put all results obtained during the experiment in a section titled

“EXPERIMENTAL RESULTS”.

2. In the report, put a section titled “PROGRAMMING HOME TASK”. Under the
PROGRAMMING HOME TASK section, write an assembly program that will run a
stepper motor from MTS86C trainer with the following controls:

If Button 1 is pushed, Motor will run forward in Full-Steps (One phase operation)

If Button 2 is pushed, Motor will run reverse in Full-Steps (One phase operation)

If Button 3 is pushed, Motor will run forward in Full-Steps (Two phase operation)

If Button 4 is pushed, Motor will run reverse in Full-Steps (Two phase operation)

If Button 5 is pushed, Motor will run forward in Half-Steps

If Button 6 is pushed, Motor will run reverse in Half-Steps

If Button 7 is pushed, Motor will stop running

3. Write a conclusion on this experiment

	8 I/O Device Interface to 8086 Microprocessor
	8.1 Objective
	8.2 Learning Outcome
	8.3 Introduction
	8.4 Theory of operation
	8.4.1 Single-phase excitation
	8.4.2 Two-phase excitation
	8.4.3 Single-phase and two-phase excitations combined
	8.4.4 Hardware Interface

	8.5 Experimentation with a Stepper Motor
	8.5.1 Equipment List
	8.5.2 Experimental Procedures
	8.5.2.1 Test RUN #1
	8.5.2.2 Test RUN #2
	8.5.2.3 Test RUN #3

	8.5.3 Assembly Program
	8.5.3.1 Running a stepper motor in Full-Steps
	8.5.3.2 Running a stepper motor in Half-Steps

	8.6 Experimentation with Seven Segment Display (FND)
	8.6.1 Experiment Procedure
	8.6.2 Assembly Program for FND

	8.7 Report

