
EEE 316 
 

Microprocessor and Interfacing Sessional 
 

Experiment 2 
 
 
 
Name of the experiment: Logical Instructions 
and Jump Commands in Assembly Language 
 
 

Venue: VLSI Lab/RNS Lab 
 
 
 
 

Department of Electrical and Electronic 
Engineering, BUET 

 



EEE 316 Experiment 2 
Department of Electrical and Electronic Engineering, BUET. 
All Rights Reserved, 2007. 
 
 

Mr. Md. Itrat Bin Shams and Dr. Kazi Mujibur Rahman, EEE, BUET, June, 2007. 1

Objective: 
 

• Using logical instructions in assembly language. 
• Incorporating Jump commands in assembly programs. 
• Writing simple assembly language programs with logical and Jump 

instructions. 
 
Introduction: 
 
Both logical instructions and Jump commands are widely used in assembly language. 
These commands are explained below. 
 
Logical instructions: 
 
Logical instructions include NOT, AND, OR, XOR, TEST etc. instructions. There job is 
to compare the data values and make results according to logic specified. For 
example, 
 
MOV   BX, 30H  ;  In binary 110000 
NOT   BX          ;  In binary 001111 
 
This code takes BX value and then complements all the bits and stores the new value 
to BX. So it stores 0F value in BX after executing NOT operation. For another 
example, 
 
MOV    BX, 70H   ;  In binary 1110000 
MOV    CX, 40H   ;  In binary 1000000 
AND    CX, BX    ;  In binary 1000000 
 
AND operation performs bit by bit AND operation and then stores the value in first 
operand. In upper code CX holds the final result. 
 
MOV    BX, 70H   ;  In binary 1110000 
MOV    CX, 40H   ;  In binary 1000000 
OR      CX, BX     ;  In binary 1110000 
 
OR operation performs bit by bit OR operation and then stores the value in first 
operand. In upper code CX holds the final result. Similar case happens for XOR and it 
is given below, 
 
MOV    BX, 70H   ;  In binary 1110000 
MOV    CX, 40H   ;  In binary 1000000 
XOR     CX, BX    ;  In binary  0110000 
 
Test operation is a little different from AND operation. It performs bit by bit AND 
operation but it does not change any operands value. 
 
MOV    BX, 70H   ;  In binary 1110000 
MOV    CX, 40H   ;  In binary 1000000 
TEST   CX, BX    ;  In binary  CX value is 1000000 



EEE 316 Experiment 2 
Department of Electrical and Electronic Engineering, BUET. 
All Rights Reserved, 2007. 
 
 

Mr. Md. Itrat Bin Shams and Dr. Kazi Mujibur Rahman, EEE, BUET, June, 2007. 2

 
All the logical instructions stated above upgrades all the flag register values except 
AF register. NOT command does not effect any flags. How flags are affected is stated 
below. 
 
MOV    BX, 70H   ;  In binary 1110000 
MOV    CX, 40H   ;  In binary 1000000 
AND     CX, BX    ;  In binary  1110000 
 
After this operation Zero Flag is 0 (ZF = 0; as the value of CX is not 0), Carry Flag is 
0 (CF = 0; as there is no carry), Parity Flag is 0 (PF = 0; as there are odd number of 
1’s), Sign Flag is 0 (SF = 1), Overflow Flag is 0 (OF = 0; as there is no overflow). In 
this all the flags can be determined. 
 
Do not confuse yourself with semicolon given after each line in assembly codes 
above. Comments are written after semi colon ‘;’ in assembly language.  
 
Exercise Part 1: 
 
Write following codes and perform indicated operations. 
 
(a) Program 1: 
 
CODE SEGMENT 
 ASSUME CS:CODE, DS:CODE 
 

MOV    BX, 3256H   
MOV    CX, 1554H    
AND    CX, BX     

 
HLT 
 

CODE ENDS 
 END 
 
 
Observe content of CX register. What operation happened here? 
 
 
 
 
 

 
(b) Program 2: 
 
CODE SEGMENT 
             ASSUME CS:CODE, DS:CODE 

MOV    BX, 3256H   
MOV    CX, 1554H    
XOR     CX, BX     



EEE 316 Experiment 2 
Department of Electrical and Electronic Engineering, BUET. 
All Rights Reserved, 2007. 
 
 

Mr. Md. Itrat Bin Shams and Dr. Kazi Mujibur Rahman, EEE, BUET, June, 2007. 3

 
HLT 

 
CODE ENDS 
 END 
 
Observe content of CX register. What operation happened here? 
 
 
 
 
 
 
(c)  Program 3: 
 
CODE SEGMENT 
             ASSUME CS:CODE, DS:CODE 
 
          MOV    AX, 1027H   
          MOV    BX, 5A27H    
          MOV    CX, 54A5H 
 
          OR     AX, BX 
 
          XOR    AX, CX 
 
          NOT    AX 
 
          TEST   CX, BX 
 
          AND    CX, AX     
 
          HLT 
 
CODE ENDS 
 END 
 
Perform this operation in single step mode and write the values of registers for every 
step. Obtain binary values for upper hexadecimal values and perform bit by bit 
operation for every step. Compare your hand calculation with obtained result. 
 

 
 
JUMP Commands: 
 
Sometimes it is necessary to go from one line of program to another line without 
executing some intermediate lines. For this Jump commands are used. We can 
explain this with a simple example. 
 
 



EEE 316 Experiment 2 
Department of Electrical and Electronic Engineering, BUET. 
All Rights Reserved, 2007. 
 
 

Mr. Md. Itrat Bin Shams and Dr. Kazi Mujibur Rahman, EEE, BUET, June, 2007. 4

            MOV    AX, 3254H   
            MOV    BX, 1F4BH    
            MOV    CX, 412AH 
 
            ADD    AX, CX 
 
            JMP    L3T2 
 
            SUB    AX, BX 
 
L3T2:    AND    AX, BX 
 
             HLT 
 
In this example L3T2 is a level. As we can see in fifth line JMP command is used. It 
makes the program to go from fifth line to L3T2 level that is seventh line. So sixth 
line is not executed. 
 
There are two types of Jump commands. These are (i) Conditional jump and (ii) 
Unconditional Jump. Previous example is an unconditional jump. Conditional Jumps 
are like if statements. If some flags are affected only then these jump instructions 
executed. We can look at the following example, 
 
             MOV    AX, 125BH   
             MOV    BX, 125BH    
             MOV    CX, 412AH 
 
             SUB    AX, BX 
 
             JZ     L3T2 
 
             DIV    BX 
 
L3T2:    AND    AX,CX 
   
            HLT 
 
Clearly observe the code. In fourth line subtraction operation is performed. As both 
AX and BX have same value. Their subtracted value is 0. So ZF is set to 1. In fifth 
line JZ L3T2 is written. It means if ZF = 1 then go to L3T2:. Otherwise continue. As 
ZF = 1, program moves to eighth line. This is a conditional Jump. Some other 
conditional jumps are, 
 
Command Condition of Jump 

JA/JNBE CF =0, ZF = 0 

JBE/JNA CF = 0 or ZF = 0 

JNB/JAE/JNC CF = 0 

JB/JNAE/JC CF = 1 



EEE 316 Experiment 2 
Department of Electrical and Electronic Engineering, BUET. 
All Rights Reserved, 2007. 
 
 

Mr. Md. Itrat Bin Shams and Dr. Kazi Mujibur Rahman, EEE, BUET, June, 2007. 5

JG/JNLE SF     OF = 0, ZF = 0 

JLE/JNG SF     OF = 0, ZF = 1 

JGE/JNL SF     OF = 0 

JL/JNGE SF     OF = 1 

JZ/JE ZF = 1 

JNZ/JNE ZF = 0 

JS SF = 1 

JNS SF = 0 

JPE/JP PF = 1 

JPO/JNP PF = 0 

JO OF = 1 

JNO OF = 0 

JCXZ CX = 0 

 
 
Exercise Part 2: 
 
Write following codes and perform indicated operations. 
 
(a) Program 1: 
 
CODE SEGMENT 
             ASSUME CS:CODE, DS:CODE 
 
               MOV    AX, 7A24H   
               MOV    BX, 15A3H    
 
               SUB    AX, BX 
 
               JMP    L3T2 
 
EEE316:   DIV    BX 
 
               JMP    Last 
 
L3T2:       MOV    CX, 45B1H 
 
               AND    AX, CX 
               TEST   AX, BX 
 
               JMP    EEE316     
 
Last:        HLT 
 



EEE 316 Experiment 2 
Department of Electrical and Electronic Engineering, BUET. 
All Rights Reserved, 2007. 
 
 

Mr. Md. Itrat Bin Shams and Dr. Kazi Mujibur Rahman, EEE, BUET, June, 2007. 6

CODE ENDS 
 END 
 
 
Perform this operation in single step mode and write the values of registers for every 
step. Explain why we need ‘Last’ termed level? What will happen if it is not used? 
 
(b) Program 1: 
 
CODE SEGMENT 
             ASSUME CS:CODE, DS:CODE 
 
                MOV    AX, 7A24H   
                MOV    BX, 95A3H    
 
                ADD    AX, BX 
 
                JC    L3T2 
 
EEE316:    OR    AX, 23H 
 
                JNZ    Last 
 
L3T2:        MOV    CX, 0FC7H 
 
                SUB    AX,CX 
 
                JZ     EEE316 
     
Last:         HLT 
 
CODE ENDS 
 END 
 
 
Update the register values in every step. 
 

Home Task: 
 

1. Write an assembly code that will determine whether a number is greater than 
5 or equal of less, and put 0 or 1 or 2 for the conditions in DX. 

2. Subtract 86B1H from 3F42H and store 0 in CX if overflow occurs and 1 if no 
overflow occurs. 

3. Take 2 arbitrary numbers x and y. If x>1000H perform x+y. If y<1000H 
perform x-y. If x>1000H and y<100H perform x = x’. 


