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Abstract

An accurate model to simulate gate capacitance versus voltage characteristics

is developed for MOS devices with uniaxially strained silicon substrate. Strain

is applied in <110> direction, most preferable direction of uniaxial strain for

mobility enhancement. Tensile stress is applied for nMOS and compressive

stress for pMOS devices. Proper energy profile correction for two conduction

band valleys and effective mass change due to uniaxial strain are incorporated

in the model. Significant amount of capacitance variation is obtained for stress

levels varied up to 5 GPa, practical limit for uniaxial stress. It is observed

that inversion region capacitance is varied in large proportion due to strain

application. Change in effective mass in inversion region is found to be the

dominant factor for the change of gate capacitance. It is also found that

the capacitance corresponding to depletion region is less sensitive to strain.

On the other hand accumulation C-V is less changed due to uniaxial strain.

In accumulation region extended state charge increases with strain while

accumulation charge decreases. Total charge is remained unaltered and this

makes the capacitance value nearly independent of strain. Proper physical

insights of all these changes are described.



Chapter 1

Introduction

Aggressive scaling of MOS devices in past decades has introduced the

feature size to nanometer regime. A methodology has been given in [1]

to show the scaling nature of MOS devices. As guided by the ITRS

(International Technology Roadmap for Semiconductors), the scaling down has

been accomplished by a decrease in gate-oxide thickness and increase in doping

density. A complete scenario of scaling features of device size, oxide thickness

and enhancement in doping concentration are given in ITRS [1].

Present day devices are produced in nanometer scale. In this small dimensions

MOS device energy profiles for a particular operating voltage is no longer

to be analyzed by semi-classical models [2, 3], instead quantum mechanical

(QM) models must be used [4]. It is known that quantum confinement occurs

in quantum wells of nanoscale devices and charges are quantized in several

energy levels known as eigenenergies.

Device scaling has reached near saturation level and new alternative

procedures are followed to increase device speed and other properties [5].

Straining is a technique that has been followed for mobility enhancement for

quite a long time. Biaxial straining technique is used in different materials and

its effects are also studied [6], [7]. Uniaxial straining process has recently been

introduced [8], [9]. It has been found that mobility enhancement is more in

case of uniaxial straining process than its biaxial counterpart [10]. Accurate
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modeling of Capacitance-Voltage (C-V) is necessary for uniaxially strained Si

devices for parameter extraction. In contrast to extensive study of biaxial

straining [11], [12], uniaxial straining technique has been given less focus. In

this work an accurate model is developed to simulate C-V characteristics for

uniaxially strained devices with proper energy profile correction and effective

mass change.

A number of self-consistent numerical simulators have been developed to

simulate C-V characteristics accurately [13]. Wave function penetration effect

occurs for nanometer scaled devices and when oxide thickness comes near 2

nm, its inclusion is a must for accurate modeling of C-V characteristics [14].

Extensive amount of work has been done to incorporate the wave function

penetration effects on C-V characteristics of ultra-thin MOS devices [14], [15].

The simulator used for this work incorporates wave-function penetration effect.

1.1 Literature Review

Wave function penetration and quantization are the two most important

phenomena for modeling ultrathin MOS devices. Extensive amount of study

has been done on these two topics. Mudanai et al. [15] have shown a method

to estimate capacitance voltage characteristics for nMOS devices incorporating

wave function penetration. It has been seen that wave function penetration

causes inversion charge distribution to shift toward the oxide-semiconductor

interface and makes the capacitance value higher. For nanometer level oxide

thickness this effect must be taken into account for accurate simulation of C-V.

Haque et al. [16] proposes a procedure to calculate normalized wave-functions

in one dimensional well structure. Via this technique (i) the eigenenergies

and the normalized eigenstates in quantum wells, (ii) the energy broadened

spatially varying density-of-states in leaky quantum wells where the particle
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lifetime is finite, and (iii) the energy position dependent density-of-states in

quantum wells where phase-breaking and/or inelastic scattering processes

are present, can be calculated. The method is based on the Green’s function

formalism.

Moglestue et al. [17] presented a self-consistent calculation for inversion region

in both nMOS and pMOS devices where Schrödinger and Poisson’s equations

are solved to find the charge distribution. C-V results are compared with the

one assuming triangular potential well. Necessity of wave function penetration

for high-k gate dielectrics is discussed by Hakim et al. [18]. It was shown that

without incorporating wave function penetration, C-V characteristics deviate

from the original value.

Rahman et al. [19] showed broadening of quantized inversion layer states in

deep submicron MOSFETs. This is needed for accurate modeling of ultrathin

gate oxide dielectric C-V. Again Haque et al. [20] calculated the normalized

electron wave functions in the inversion layers of nMOSFETs with ultra-thin

gate oxides. Here an asymptotic boundary condition is taken that considers

flat energy band profile deep inside the metal as well as deep inside the

semiconductor. They showed that the use of the conventional boundary

condition overestimates the distance of the carriers from the interface by a

few angstroms. All these literatures are used to build self consistent model

to simulate C-V characteristics incorporating wavefunction penetration.

Straining technique is used for quite a time for mobility enhancement. Biaxial

straining process is well known for its application in MOS devices [11],[12],

[21]. Uniaxial process has recently been introduced [8], [22]. Uniaxial process

is used for its property to increase mobility than the biaxial process [10], [23],

[24]. Uniaxial process is treated as the next generation technique for high

speed devices but little concentration is given for accurate simulation of C-
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V characteristics of MOS devices with uniaxially strained Si substrate. C-V

simulation for biaxially strained device is studied in many literatures [25]. C-

V characteristic is important for parameter extraction such as oxide thickness,

doping density, flatband voltage etc. So accurate simulation of uniaxially

strained devices is necessary for proper characterization.

Process of uniaxial strain is highlighted in [26],[27],[28]. Ranade et al. [29]

describes 35 nm technology with uniaxial straining process. Thorough device

physics study is done in [30],[31],[32]. Giusi [33] has studied the reliability of

SiN capping layer which is used to introduce uniaxial strain. Zhao et al. [34]

estimated drain current characteristics for uniaxially strained devices. But no

literature has focused the study of C-V characteristics for uniaxially strained

MOS devices.

Balslev [35] studied the effect of uniaxial strain on Si conduction band and

valence band. He gave expressions of the net shift of energy profiles due to

the application of strain. Laude [36] also gave this type of expressions but

those are valid for low levels of stress. Strain causes curvature of the band

structure to change. So variation of effective masses is expected. Dhar et al.

[37] showed variation of effective masses with uniaxial <110> strain for two

valleys of conduction bands. Incorporation of band diagram shift and effective

mass change leads to develop C-V simulator for MOS devices with uniaxially

strained silicon substrate for this work.

1.2 Objective of This Work

In this work, an accurate C-V simulator to simulate gate capacitance with

uniaxial strain application is developed. The simulator is incorporated with

wave function penetration consideration so that it can simulate C-V for

ultrathin devices. Accurate band shifting along with effective mass change
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from [35] and [37] are included so that devices under practical level of straining

can be analyzed. Simulation is done with tensile stress for nMOS and

compressive stress for pMOS. These are conventional stress types in CMOS

technology. Stress level is varied up to 5 GPa, which is practical limit of stress

application. Here stress is applied in <110>. Although stress can be given in

other directions but for uniaxial straining process mobility enhancement occurs

in maximum proportion if stress is applied in <110> direction. So <110>

uniaxial strain is going to be studied in this work. Simulation of inversion

and accumulation capacitance for electrons will be done. Physical insights of

capacitance value changes will be discussed to understand the effect of strain.

1.3 Organization of The Thesis

In chapter 2 necessary theories to develop self-consistent model and strain

effect on Si band structure and effective masses are discussed. Method of

strain effect inclusion is presented. In chapter 3 simulated results are presented.

Inversion and accumulation C-Vs are simulated for different stress conditions

for electrons. Results are compared with relaxed C-V and percentage change

is also given. Physical insight is discussed for C-V change due to strain

application from total charge change. Simulations are also performed for

different doping concentrations so that the effect of doping density on the C-

V’s strain effect can be analyzed. Finally complete flow chart of the simulator

is given.



Chapter 2

Uniaxial Strain and Self-Consistent
Model

This section describes uniaxial strain and self-consistent model. Complete

analysis of uniaxial strain for MOS devices, as a parameter to alter band

diagram as well as effective masses is given. The self-consistent model with

wave function penetration consideration to generate C-V characteristics is also

been presented.

2.1 MOS Structure

Metal-insulator-semiconductor (MIS) transistor is one of the most widely

used electronic devices, particularly in digital integrated circuits. These

types of devices are made using silicon as the semiconductor, SiO2 as the

insulator and metal or polysilicon as the gate electrode. The term metal oxide

semiconductor field-effect transistor (MOSFET) or MOS devices is used to refer

these devices.

Fig. 2.1 shows an n-channel enhancement-type MOS device. This device is

fabricated on a p-type substrate which is a single-crystal silicon wafer that

provides physical support for the device. Two heavily doped n-type regions

termed as source and drain regions are created in the substrate. A thin layer

of silicon dioxide (SiO2) or any other material that is an excellent electrical

insulator is grown on the surface of the substrate, covering the area between



Uniaxial Strain and Self-Consistent Model 7

the source and drain regions. Metal acts as the electrode for the device. Metal

contacts are also brought out the source region, the drain region and the

substrate also known as the body. Thus four terminals are brought out: the gate

terminal (G), the source terminal (S), the drain terminal (D), and the substrate

or body terminal (B).

Fig. 2.1: Cross section of an enhancement-type n-MOSFET.

2.2 Gate Capacitance

The C-V characteristics of the MOS structure depends on whether the

semiconductor surface is in accumulation, depletion or inversion. A typical

C-V characteristics is shown in Fig. 2.2. The electrical equivalent of MOS

capacitor is the series combination of a fixed voltage-independent gate insulator

capacitance and a voltage-dependent semiconductor capacitance such that the

overall MOS capacitance becomes voltage dependent.

The series capacitance in accumulation is basically the insulator capacitance,
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Fig. 2.2: Semi-classical C-V characteristics of an enhancement-type n-MOS.

Cox. Since for negative voltage, holes are accumulated at the surface, the

MOS structure appears almost like a parallel-plate capacitor dominated by the

insulator properties. As the voltage becomes less negative, the semiconductor

surface is depleted. The depletion layer capacitance Cd, added in series with

Cox to form the total capacitance. This value decreases until finally inversion

is reached. After inversion is reached, the small signal capacitance depends

on whether the measurements are made at high or low frequency. Here ’high’

and ’low’ are with respect to the generation-recombination rate of the minority

carriers in the inversion layer. The charge in the inversion layer cannot change

in response if the gate voltage is varied rapidly. Thus this does not contribute

to the small signal a-c capacitance. Hence the semiconductor capacitance is at a

minimum, corresponding to a minimum depletion width.

On the other hand if the gate bias is changed slowly, there is plenty of time for

minority carriers to be generated in the bulk, drift across the depletion region

to the inversion layer, or go back to the substrate and recombine. There is

an increase in gate capacitance in inversion region as gate bias is increased.

The low frequency MOS capacitance in strong inversion is basically Cox once

again. In accumulation we get a very high capacitance both at low and high

frequencies because the majority carriers in the accumulation layer can respond
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much faster than minority carriers.

2.3 Theory of Strain

Strain technique is widely used to enhance the performance of a MOS device.

Present day MOS devices are strained in two ways, uniaxially and biaxially.

Biaxial strain is quite familiar as it has been extensively studied [11],[12].

Uniaxial strain technique has been given less concentration and gate C-V

characteristics study for MOS devices with uniaxially strained silicon substrate

is absent in literatures. A complete theoretical insight of uniaxial straining

process is given below.

2.3.1 Uniaxial Straining Process

Any straining technique is directly related to stress. A mechanical stress is

applied to a device and it introduces strain in different directions. Biaxial

straining is given by forming strained Si layer over a relaxed SiGe layer and

vice versa. In this way lattice constant of Si is changed and specific change

in properties such as band splitting and effective mass variation is observed.

These effects lead to a change in C-V and other characteristics of MOS devices.

Such changes are studied in [25].

Process of uniaxial strain is a little different from its biaxial counterpart. Two

types of uniaxial strain is given. Tensile strain is given to nMOS devices and

compressive strain to pMOS devices [38]. These are done as different straining

process enhances mobility in different proportions in different devices. Usually

SiGe is used in source and drain side or nitride capping layer is used on the

gate for uniaxial straining process. Nitride capping layer can be used for both

compressive and tensile stress. Both the processes introduces a stress in the

channel region of the MOS device and as a result strain is introduced. Physical

picture of uniaxial straining process is shown in Fig. 2.3 and Fig. 2.4.
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Gate

SiGe Epitaxial Growth

Fig. 2.3: Uniaxial straining process with SiGe layer in source and drain region.

Gate Gate

NMOS PMOS

Tensile Nitride
Compressive 

Nitride

Fig. 2.4: Uniaxial straining process with nitride capping layer.

In Fig. 2.5 process of biaxial stress [9] is shown. Here a cubic crystal is in biaxial

tensile stress. Application of the stress causes xy plane to remain as a square

but x and yz plane are no longer square. They are now rectangular. In Fig. 2.6

cubic crystal under <110> uniaxial compressive stress is shown. Here x and

yz planes become rectangles but xy plane becomes a rhombus. This introduces

shear strain terms which is absent in biaxial strain. These shear terms make the

characteristics of MOS devices to change from biaxial straining results.

Relationship between stress and strain can be shown by a matrix multiplication.

It can be expressed as, ε = S.σ. Elaborately it is shown as,

⎡
⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εyz

εzx

εxy

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S12 0 0 0
0 0 0 S44/2 0 0
0 0 0 0 S44/2 0
0 0 0 0 0 S44/2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σyz

σzx

σxy

⎤
⎥⎥⎥⎥⎥⎦ (2.1)
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X

Y

X,Y

Z

Fig. 2.5: Cubic crystal under in plane biaxial tensile stress.

X,Y

Z

X

Y

Fig. 2.6: Cubic crystal under uniaxial <110> compressive stress.

Here, x, y, z are directions of applied stress and resulted strain. S11, S12, S44 are

conventional compliance coefficients. The values for Si are,

S11 = 8.63 × 10−12N−1m2

S12 = −2.13 × 10−12N−1m2

S44 = 12.49 × 10−12N−1m2

For <110> uniaxial stress σ is applied in three different directions. They are

given as, σxx = σyy = σxy = σ/2. As there is σxy, shear strain terms are

introduced which is completely absent in biaxial strain. This makes uniaxial

straining technique favorable in terms of mobility enhancement and at the same

time complex to evaluate the effect caused by it.
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2.3.2 Band Splitting Due to Uniaxial Strain

Strain causes valley degeneracy to lift. So band structure does not remain same

for strained and relaxed silicon. In relaxed silicon two conduction bands, ∆2

and ∆4 are at degenerate state. As strain is introduced degeneracy is lifted. For

tensile stress ∆4 band goes up and ∆2 moves down. Opposite situation arises

for compressive stress. Similarly for valence band, heavy hole and light hole

(HH and LH) bands are at degenerate state for relaxed silicon. Strain lifts this

degeneracy and for tensile stress LH band goes up and HH moves down. Due

to the shift of the bands, band gap energy Eg also changes. All these changes are

necessary to model strain effect in MOS devices correctly. In Fig. 2.7 conduction

band and valence band change due to uniaxial tensile stress are shown.

Ec

Ev

HH

LH

Relaxed Silicon
Uniaxially Strained

Silicon

2

4

Strained

Band Gap

Relaxed

Band Gap

Fig. 2.7: Band splitting due to uniaxial tensile stress.

Expressions of band splitting as a function of strain is presented in many

literatures. Laude et al. presented some equations in [36]. But these expressions

are applicable for low stress levels. Hasegawa [39] also studied the valence

band structure but no interrelation with the conduction band is given. Here
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expressions by Balslev [35] are followed. According to Balslev, band splitting

due to uniaxial <110> strain is,

∆E2
c − ∆E0

c = −1

3
(S11 − S12)ΞuP (2.2)

∆E4
c − ∆E0

c =
1

6
(S11 − S12)ΞuP (2.3)

∆E0
c = ∆Eg0 − |Eεε| − 1

3
(S11 − S12)ΞuP (2.4)

∆E0
g = (Ξd +

1

3
Ξu − a)(S11 + 2S12)ΞuP (2.5)

|Eεε| =
1

2
[b2(S11 − S12)

2 + 3(
d

2
√

3
S44)

2]
1
2 |P | (2.6)

Here, ∆E0
c = Hydrostatic band shifting of the conduction band

∆Ei
c = Band splitting for the ith valley

∆Eg0 = Change in the energy band gap

P = Applied stress

Ξu = 8.6 eV

Ξd + 1
3
Ξu − a = 3.8 eV

Eqn. 2.2 is the band splitting for ∆2 conduction band valley, eqn. 2.3 is for

∆4 conduction band valley with respect to the mean position of conduction

band shift. Eqn. 2.4 represents hydrostatic shift of the mean position of the

conduction band. Finally 2.6 is for valence band splitting. High amount of

stress in GPa range can create significant amount of band splitting and this

effect can cause change in the total charge distribution and as a consequence

C-V characteristics. Change in two conduction band valleys, energy gap and

valence band are shown in figs. 2.8 and 2.9. It is clear that strain causes

considerable amount of band splitting and it has to be taken into account for

the accurate simulation of electrostatic behavior of MOS devices with strained

silicon substrate.
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Fig. 2.8: Conduction band splitting due to uniaxial tensile stress.
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Fig. 2.9: Valence band splitting and change in energy gap due to uniaxial tensile stress.

2.3.3 Effective Mass Variation Due to Uniaxial Strain

Uniaxial strain causes the curvature of energy diagram to change from that

of the relaxed condition. As effective masses are dependent on the curvature
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of energy diagram, changes in all the effective masses (both quantization and

density of state) for both the conduction bands are expected. Dhar et al.

[37] showed the change in the effective mass in three different directions as

a function of applied stress as,

mx = 0.918 + 0.0236X2 (2.7)

my = 0.196 − 0.016X (2.8)

mz = 0.196 + 0.029X (2.9)

Here, mx, my and mz are effective masses in three crystal directions, 100, 010,

001. From these expressions quantization and density of state effective masses

are derived as,

md1 =
√

mymz (2.10)

mz1 = mx (2.11)

md2 =
√

mxmy (2.12)

mz2 = mz (2.13)

Here, mz1 and md1 are the quantization and density of states effective masses

for the ∆2 conduction band valley, md2 and mz2 are same for the ∆4 conduction

band valley. Variation of these effective masses are shown in Fig. 2.10 and in

Fig. 2.11.

Compressive strain is applied to pMOS devices so change in effective masses

due the application of compressive stress is also important. Fig. 2.12 and 2.13

shows change in density of states and quantization effective masses due to
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Fig. 2.10: Change in density of states effective masses with stress.
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Fig. 2.11: Change in quantization effective masses with stress.

compressive stresses.

Effective masses play a vital role in charge calculation and calculation of
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Fig. 2.12: Change in density of states effective masses with compressive stress.
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Fig. 2.13: Change in quantization effective masses with compressive stress.

eigenenergies. As seen from the figures strain causes large change in effective

mass values. So it will also cause change in total charge distribution. These

changes are to be incorporated in numerical calculations to generate accurate



2.4 Self Consistent Simulator 18

C-V.

Both band splitting and effective mass variations are incorporated in this work

with the expressions given above. Change in Eg causes the intrinsic carrier

density to change from its relaxed value of 1.5 × 1010cm−3 as,

Ni = 1.5 × 1010cm−3 × exp ∆Eg (2.14)

2.4 Self Consistent Simulator

Self-consistent Schrödinger-Poisson solver is widely used for simulation of

MOS devices. In this work the self consistent simulator used is based on

Green’s function formalization [14]. Detail of the calculations are given

below.

2.4.1 Basic Model

Schrödinger solver

Stern [4] and Moglestue [17] described a self-consistent solution approach for

the first time. Three major assumptions by Stern were,

(1) Effective mass approximation is valid. So periodic potential need not be

taken into account.

(2) At the silicon surface envelop wavefunction vanishes.

(3) Surface states are neglected and any charge in the oxide near semiconductor

body can be replaced by an electric field.

By the effective mass approximation, Schrödinger’s equation for the wave

function ψ0ij
can be written as,
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[−1

2
�

2∇m∗−1∇ + eV (z)]ψ0ij
= E

′
ijψ0ij

(2.15)

Here, m∗−1 is the effective mass tensor, V (z) the electrostatic potential, e is

electron charge magnitude and E
′
ij is the energy. z is the direction in the

MOSFET from gate to the bulk body.

Stern [4] showed that the electronic wavefunction ψ0ij
for the jth subband in the

ith valley can be expressed in terms of Bloch function traveling parallel to the

interface, constrained by an envelope function normal to it. This is represented

as,

ψ0ij
(x, y, z) = ψij(z)eiθzeikxx+ikyy (2.16)

where, kx and ky represents the component of the wave vector k in x and y

direction. θ depends on kx and ky. ψij(z) can be obtained from,

[− �
2

2mzi

d2

dz2
+ eV (z)]ψij(z) = Eijψij(z) (2.17)

where, mzi is the quantization effective mass and Eij is the eigenenergy of the

jth subband in the ith valley in the perpendicular direction.

Here two boundary conditions are used for the solution of (2.17). They

are,

• ψij(∞) = 0 deep inside the semiconductor

• ψij(0) = 0 at the metal oxide interface.

Each eigenvalue Eij found from the solution of Eq. (2.17) is the bottom of

subband, with energy levels given by,

E
′
ij = Eij + �

2k2
x/2mx + �

2k2
y/2my (2.18)
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here mx and my are the effective masses in the transport plane. The conduction

band of silicon has six ellipsoidal valleys along the 100 direction of the Brillouin

zone. As a result there can be as many as three values of mz depending on

the surface orientation. From the effective mass approximation, the valleys are

degenerated in pairs. So the solution of Eq. (2.17) gives the eigenenergy Eij and

the envelope function ψij(z).

2.4.2 Green’s Function Formalism

The process of Schrödinger’s equation solution as stated above is based on

Green’s function [19]. Green’s function is a technique for calculating an effect at

a certain point due to disturbance at any other point. In MOS devices retarded

Green’s function for the i’th valley at a distance z is given by,

[E +
�

2

2mzi

∂2

∂z2
− eV (z) + iε]GR

i (z, z
′
; E) = δ(z − z

′
) (2.19)

Here ε is an infinitesimally small positive energy. Its value is in 10−12 range.

Retarded Green’s function GR
i (z, z

′
; E) is a wave function at z originated by

an excitation at z′. An important fact here is this that Green’s function is

continuous at z = z′ and the derivative is discontinuous at z′ by, 2mzi/�
2.

One dimensional density of states, N1D, eigenenergies Eij and normalized

wavefunctions, ψij are calculated using the retarded Green’s function. The

logarithmic derivative of the retarded Green’s function GR is defined by,

Zi(z, z′; E) =
2�

imzi

[
∂GR

i (z, z
′
; E)

∂z
/GR

i (z, z
′
; E)] (2.20)

Two boundary conditions are needed to estimate Zi(z, z′; E) as Zi(z, z′; E)

has a discontinuity at z = z′. Here we assume that potential profile is flat

inside the semiconductor and inside the metal at a distance far from the oxide

semiconductor interface. So if we have V (∞) is the constant potential at z = ∞
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(deep inside the semiconductor) and if V (−∞) is the constant potential at

z = −∞ (deep inside the gate metal), Green’s function may be expressed

as,

GR
i (z −→ ∞, z′; E) ∼ eγi(∞)(z−z′) (2.21)

and

GR
i (z −→ −∞, z′; E) ∼ e−γi(−∞)(z−z′) (2.22)

where, γi(±∞) = i
√

(2mzi/�2)(E − eV (±∞) + iε). The boundary conditions to

estimate Zi are determined from Eq. (2.21) and (2.22). These are,

Zi(z −→ ∞, z′; E) = Zoi(∞), z > z′ (2.23)

and

Zi(z −→ −∞, z′; E) = Zoi(−∞), z < z′ (2.24)

where, Zoi(±∞) = (2�/imzi)γi(±∞). From the properties of 1D Green’s

functions, it can be shown [16], for all z > z′:

Zi(z, z′; E) = Z+
i (z; E) (2.25)

for all z < z′,

Zi(z, z′; E) = Z−
i (z; E) (2.26)

here, Z+
i (Z−

i ) does not depend on z′ as long as z > z′ (z < z′). To calculate,

Z±
i method described by [40] is followed. Here microwave transmission line
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analogy is used to find the eigenenergies for any quantum well. Use of this

technique in MOS quantum wells is given in [20].

The normalized wave function is calculated from retarded Green’s function. We

have GR
i expressed as a function of complete set of eigenfunctions,

GR
i (z, z′; E) =

∑
j

ψij(z)ψ∗
ij(z

′)

E − Eij + iε
(2.27)

If Ei(j+1) − Eij >> ε for all j, only one term dominates when E → Eij , as the

discrete eigenenergies are degenerate. For the diagonal elements of GR
i , we

obtain

GR
i (z, z′; E → Eij) ∼= |ψij(z)|2

E − Eij + iε
(2.28)

Equating imaginary parts of (2.28) and putting E = Eij ,

|ψij(z)|2 = −εIm[GR
i (z, z′; Eij)] (2.29)

It has been shown in [16] that,

−Im[GR
i (z, z′; Eij)] =

4

�
Im(

i

Z+
i (Eij) − Z−

i (z; Eij)
) (2.30)

From (2.30) in (2.29),

|ψij(z)|2 =
4ε

�
Im(

i

Z+
i (z; Eij) − Z−

i (z; Eij)
) (2.31)

Again 1D state of density N1D is related to the diagonal part of GR. N1Di
(z; E),

in terms of retarded Green’s function, GR
i is given by,
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N1Di
(z; E) = − 1

π
Im[GR

i (z, z′; E)] (2.32)

When ε → 0+, the density-of-states (DOS), N1Di
(z; E), becomes a delta function

at the eigenenrgies, E = Eij in a bound system with the amplitude equal to the

probability density at that energy, i.e.,

N1Di
(z; E) =

∑
j

|ψij(z)|2δ(E − Eij) (2.33)

Final expression of N1Di
is given by,

N1Di
(z; E) =

Vi

π

|ψij(z)|2
(E − Eij)2 + V 2

i

(2.34)

Using Eq. (2.32), N1D can be expressed in terms of the logarithmic Z±
i [16]:

N1Di
(z; E) =

4

π�
Im(

i

Z+(z; E) − Z−(z; E)
) (2.35)

Poisson solver

Poisson solver is needed to obtain the potential profile V (z). This is the starting

phase of the self-consistent simulator. Here Poisson’s equation is solved by

finite difference method considering nonuniform grid spacing. Grid spacing is

finer near oxide semiconductor interface.

d2V (z)

dz2
= − [ρdepl(z) + ρinv(z)]

εsiε0

, for z > Tox (2.36)

d2V (z)

dz2
= − [ρinv(z)]

εoxε0

, for z ≤ Tox (2.37)
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Here, εsi is the dielectric constant of semiconductor, εox is the dielectric

constant of oxide, ρdepl(z) is the depletion charge and ρinv(z) is the inversion

charge distribution along z. Inversion charge is calculated with wave-function

penetration effect consideration. Once proper charge distributions are known

accurate determination of the potential profile is done. ρinv(z) is calculated from

eigenenergies and wave-function values. It is given by,

ρinv =
∑
ij

Nij|ψij(z)|2 (2.38)

Nij =
nvimdikT

π�2
ln[1 + exp(

EF − Eij

kT
)] (2.39)

Here, nvi is the valley degeneracy and mdi is the density of states effective mass

of the ith valley as shown in the previous section. EF is the Fermi level.

Depletion charge density ρdepl(z) is given by,

ρdepl(z) =

{ −e(NA − ND), 0 < z < zd

0, z > zd
(2.40)

here, zd is the depletion layer thickness which is given by,

zd =

√
2εsiε0Φd

e(NA − ND)
(2.41)

where Φd is the depletion charge band bending. Φd is given by,

Φd = Φs − kT

e
− eNinvzavg

εsiε0

(2.42)

Here, Φs is the total band bending of the semiconductor. Ninv is the total

inversion charges per unit area in the inversion layer. It is expressed as,
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Ninv =
∑
ij

Nij (2.43)

Again zavg is the average distance of the inversion charge from the silicon-oxide

interface and it is given by,

zavg = (1/Ninv)
∑
ij

Nij

∫
z|ψij|2dz (2.44)

Boundary conditions are used for the solution of Eq. (2.36). These are,

• V (zd) = 0

• V (0) = Vg, at the metal oxide interface. Here Vg acts as the gate voltage

input.

• At the oxide semiconductor interfaceFs = Fox, where,

Fs =
e(Ninv + Ndepl)

εsiε0

Fox =
e(Ninv + Ndepl)

εoxε0

(2.45)

are the surface electric fields and,

Ndepl = zd(NA − ND) (2.46)

is the number of charge per unit area in the depletion layer.

2.4.3 Coupling Schrödinger and Poisson’s Equation

Calculation for inversion

Self-consistent simulation is done for each gate bias for a MOS device. Here

gate bias acts as the input. First for a particular gate bias Poissin’s equation 2.36

is solved by finite difference method. According to finite difference method,
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d2V

dz2
=

Vn+2 − 2Vn+1 + Vn

δz2
= −ρn/ε (2.47)

Here, n+2, n+1 and n are different grid space points. ρn is the value of

total charge in space point n and ε is the dielectric constant for oxide or the

semiconductor. Solving the Poisson’s equation, voltage profile for a particular

gate bias is gained. From it potential profile is estimated. Schrödinger’s

equation is solved by retarded Green’s function to get the eigen states and from

that inversion charges are calculated for each state and for each valley (2.39).

From these charges ρinv is estimated. Taking the full charge profile, (ρinv, ρdepl)

Poisson’s equation is solved again. A new potential profile is generated by

taking 96% percent of the older profile and 4% of the newer profile. Whole

calculation is done again. This procedure is repeated until error between the

two successive profiles is less than 0.01%.

For higher gate voltages starting potential profile for the calculation is taken as

the last converged profile of previous gate volteg.

Calculation for accumulation

Calculation for accumulation region is same as that of inversion region except

the depletion charge absence. Here a new charge is introduces and that is the

extended states charge. Though in inversion, extended state charges are also

present, but it can be neglected due to the lower value of Fermi potential. But

in accumulation region Fermi level is very close to the conduction band and

this makes the extended state charges dominant. Extended state charges are

calculated in the following way,

Qextnd =

∫ ∞

Ec

f(E)gc(E)dE (2.48)
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for conduction band

Qextnd =

∫ Ev

−∞
f(E)gv(E)dE (2.49)

for valence band

Here, f(E) is the Fermi function given by,

f(E) =
1

1 + expE−EF /kT
(2.50)

and, gc,v(E) is density of states as,

gc(E) =
m∗

n

√
2m∗

n(E − Ec)

π2�3
(2.51)

for conduction band

gv(E) =
m∗

p

√
2m∗

p(Ev − E)

π2�3
(2.52)

for valence band

Here, m∗
n and m∗

p are the conduction and valence band effective masses

respectively.



Chapter 3

Simulations and Results

In this chapter simulations and physical explanation of the change in C-V

are given. Inversion C-V for nMOS and accumulation C-V characteristics for

pMOS are given with practical strain limit. Here all the simulations are done

for <110> unixial strain. <110> direction is chosen for its wide practical

use and the effect on mobility enhancement of electron [10]. Tensile stress is

applied for nMOS and compressive stress is applied for pMOS. This is chosen

as tensile stress introduces greater amount of mobility enhancement in nMOS

and compressive stress does the same for pMOS. Different doping density is

used to observe the doping density dependence of strain effect on the C-V

characteristics.

3.1 Inversion Capacitance Change Due to Uniaxial Strain

Fig. 3.1 shows C-V characteristics for relaxed and strained silicon MOS devices.

Here doping density Na = 1018cm−3, oxide thickness Tox = 2 nm, oxide material

is SiO2. Significant amount of change is observed in C-V for strained case with

respect to relaxed Si case. C-V change is dominant in inversion region. There

is insignificant amount of variation of C-V in depletion region due to strain.

Strain causes inversion region to alter in more proportion than the depletion

region.
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Percentage change of C-V for strained Si devices is shown in Fig. 3.2. It can be

seen that increase in strain increases the change in C-V. More strain causes more

deviation for gate capacitance. Up to 5% of change is observed for X = 5 GPa of

stress. This indicates significant amount of C-V variation due to uniaxial strain

application.
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Fig. 3.1: Gate capacitance vs. gate voltage for relaxed and strained Si MOSFETs with
Na = 1018cm−3.

To understand the physical insight of the C-V change complete electrostatic

study of strained device is done. Fig. 3.3 shows total charge vs. gate voltage

characteristics of relaxed and strained Si devices. It is clearly seen that for low

bias or in depletion region there are insignificant changes in charge, but for

higher gate bias or in inversion region, we have considerable amount of charge

change due to strain. As Cg = dQtot

dVg
, capacitance change is also observed in high

bias region. Depletion band bending and depletion width for strained devices

is shown in Figs. 3.4 and 3.5. It is clearly seen that strain has virtually no effect

on these two characteristics and as a result no change in depletion layer charges

is seen. This leads to no change in depletion capacitance. Fig. 3.6 shows change
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Fig. 3.2: Change in gate capacitance of strained Si MOSFETs with respect to relaxed Si
MOSFET.

in inversion layer charges with strain. Inversion layer charges are changed with

a great percentage due to application of strain.
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Fig. 3.3: Total charges of relaxed and strained Si MOSFETs.
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Fig. 3.4: Depletion band bending of relaxed and strained Si MOSFETs.
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Fig. 3.5: Depletion width change of relaxed and strained Si MOSFETs.

As Cinv = dQinv

dφs
, change in the inversion charges leads to significant change in

inversion capacitance. This change is shown in Fig. 3.7. Inversion capacitance

change trend is identical to the change in gate capacitance confirming gate
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Fig. 3.6: Inversion charges of relaxed and strained Si MOSFETs.

capacitance changes mostly due to variation in inversion capacitance. Fig. 3.8

shows inversion charge distribution ρinv inside Si for relaxed and strained Si

device at Vg = 1.4 V. Here z=0 is metal oxide interface. Strain causes ρinv to

increase. Fig. 3.9 shows zavg vs. gate voltage curve for relaxed and strained Si

devices. zavg is the average distance of the inversion charge density from oxide-

semiconductor interface. Decrease in zavg indicates increase in Cinv.

Now we find the reason for charge distribution change due to uniaxial strain

application. Uniaxial strain causes both the energy band level and the effective

mass to change. Both of these parameters make C-V characteristics to vary

with strain. Fig. 3.10 shows two C-V characteristics compared with relaxed

C-V. One is simulated with no effective mass correction and another one with

both band level and effective mass correction. It is seen that band level plays a

small role in C-V change due to strain. Effective mass plays a vital role. As can

be seen from the theory section energy profiles are changed by small amounts

for strain application. On the other hand effective masses change strongly

with strain. Two effective masses are used in a Self-consistent simulator.
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Fig. 3.7: Inversion capacitance of relaxed and strained Si MOSFETs.
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Fig. 3.8: Inversion charge distribution of relaxed and strained Si MOSFETs at Vg = 1.4
V.

Quantization effective masses are used to find the eigenenergies and density

of states effective masses to find inversion charges in different energy levels.

Increase in quantization effective mass lowers the eigenenergy values making
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Fig. 3.9: zavg of relaxed and strained Si MOSFETs.

the differences between eigenenergies and Fermi level decrease. This makes

total inversion charge to increase. Inversion charges for different energy levels

are directly proportional to the density of states effective masses. So change in

density of states effective masses make total inversion charges to increase and

as a result total charges to increase. Gate capacitance value is increased due

to both the effective masses’ change with uniaxial strain application for nMOS

inversion region.

Another set of simulations with Na = 5 × 1017cm−3 is carried out. C-V

characteristics and change in C-V for strained devices are shown in Fig. 3.11

and Fig. 3.12. It is seen that error levels are about same as that for Na =

1018cm−3. This suggests that change in doping density does not make any

significant variation over the strain effect of C-V characteristics.
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Fig. 3.10: Change in C-V with and without effective mass correction.

0.0 0.5 1.0 1.5 2.0

0.4

0.8

1.2

1.6

 Relaxed

X = 1 GPa

X = 3 GPa

X = 5 GPa

G
a
te

 C
a
p
a
ci

ta
n
ce

, 
C
g
 (
µ
F
/c

m
2
)

Gate Voltage, V
g
 (V)

Fig. 3.11: Gate capacitance vs. gate voltage for relaxed and strained Si MOSFETs with
Na = 5 × 1017cm−3.

3.2 Accumulation Capacitance Change Due to Uniaxial

Strain

Change in accumulation C-V characteristics under compressive stress for

doping density Nd = 5 × 1017cm−3 is shown in Fig. 3.13. Here oxide thickness
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Fig. 3.12: Change in gate capacitance of strained Si MOSFETs with respect to relaxed Si
MOSFET.

is 2 nm, oxide material is SiO2. Clearly insignificant amount of change in

capacitance value is observed for high gate bias. The percentage change is

less in accumulation than in inversion region. Two different compressive

stress levels are shown and it is observed that change in C-V increases with

applied strain as in Fig. 3.14. Though comparatively high amount of change

is seen in low gate bias region, this is not a considerable factor for this work.

Conventionally MOS devices are not operated in low bias regions. And the

observed change is due to numerical limitation of our simulator for high

doping densities which is not seen for lower doping densities or higher gate

biases. Physical explanation of capacitance value change in high bias region is

explained below.

In accumulation region total charge to estimate capacitance is calculated from

accumulation charge or bond charge and extended state charge. Though

extended state charges exist in inversion, due to the lower position of the

Fermi level, it is insignificant. In accumulation Fermi level is very close
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Fig. 3.13: Gate capacitance vs. gate voltage for relaxed and strained Si MOSFETs with
Nd = 5 × 1017cm−3.
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Fig. 3.14: Change in gate capacitance of strained Si devices for accumulation.

to the conduction band and exclusion of extended state charge will lead to

underestimation of the total charges. Fig. 3.15 and 3.16 shows variation of

two types of charges with uniaxial stress level. It is observed that they show
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opposite tendency. Accumulation charges decreases and extended state charges

increases with strain. Total charge remains almost the same for all levels of

strain. This makes less change in capacitance value.
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Fig. 3.15: Variation of extended state charge with strain.

Decrease in accumulation charge and increase in extended state charge occurs

due to strong dependency of density of states effective masses and quantization

effective masses of two conduction band valleys with compressive stress as

shown in the theory section. Compressive stress increases density of states

effective mass in ∆2 band and decreases in ∆4 band. Again ∆4 band comes

closer to the fermi level for compressive stress application. These effects

increases the extended state charge for ∆4 band and it dominates over ∆2

band extended state charge. So total extended state charge increases. Again

quantization effective mass is decreased for ∆4 band while is increased for ∆2

band. As increase in quantization effective mass means more eigenenergies in a

quantum well, accumulation charges is to be increased. But decrease in density

of states effective mass means less accumulation charges and density of states
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Fig. 3.16: Variation of accumulation charge with strain.
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Fig. 3.17: Variation of total charge with strain.

effective masses show different direction of change with the compressive stress

compared to quantization effective mass change. Due to two counter effects

total accumulation charge decreases. Fig. 3.18 shows accumulation charge and
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extended state charge distribution for Vg = 0.1 V for two levels of strain. It is

clear that strain shifts the accumulation charges down but do the reverse for

the extended state charge. Fig. 3.17 shows total charge as a function of the gate

bias. As total charge is the summation of both the extended state charge and

accumulation charge and it remains weakly dependent on strain.
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Fig. 3.18: Distribution of extended state and accumulation charges at Vg =0.1 V.

Two oppositely directed charges, extended state charge and accumulation

charge make total capacitance in accumulation to be independent of strain.

From the previous results it is clear that the strain shifts the inversion

capacitance in more proportion than in accumulation.

Accumulation C-V for another doping density Nd = 5 × 1016cm−3 is shown in

Fig. 3.19. Again no significant amount of change in capacitance value due to

strain is observed. Extended state charge and accumulation charge per m2 is

shown in Fig. 3.20. Extended state charges are increasing with strain. Fig. 3.21

shows accumulation charges are decreasing with strain. As the total charge

is the summation of these two charges, it remains nearly same for all values
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Fig. 3.19: Gate capacitance vs. gate voltage for relaxed and strained Si MOSFETs with
Nd = 5 × 1016cm−3.
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Fig. 3.20: Variation of extended state charge with strain.

of strain. This makes capacitance value to change in insignificant proportion

due to strain application. Fig. 3.22 shows total charge for three different stress

levels. Total accumulation charge and extended state charge are obtained by
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Fig. 3.21: Variation of accumulation charge with strain.
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Fig. 3.22: Variation of total charge with strain.

integrating the area of the distribution. Here results are quite similar as the

previous doping density. Doping density variation does not introduce any
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change in the trend of C-V for strained MOS devices in accumulation region.

This is similar to our conclusion for inversion region.



Chapter 4

Conclusion

4.1 Summary

An accurate self consistent model is developed to simulate C-V characteristics

for uniaxilly strained MOS devices incorporating wave function penetration

and necessary band splitting and effective mass change. C-V characteristics are

simulated for inversion and accumulation regions. The results are compared

with relaxed C-V and percentage changes of C-Vs of strained devices with

relaxed device are given.

Uniaxial straining technique is recently been introduced to enhance mobility of

the carriers in more extent than other conventional techniques. C-V modeling

of uniaxial devices is necessary for parameter extraction. Accurate modeling

of C-V is possible with the given simulator for any stress level up to 5 GPa,

practical limit for uniaxial stress. A detail physical insight is given regarding the

change of C-V due to strain. It has been seen that strain causes inversion region

capacitance to change and depletion region capacitance remains unaltered.

Strain causes no change in depletion width or depletion band bending. But

significant amount of change is seen in the inversion charges. This causes C-V

to change in more percentage in inversion region. It is observed that effective

mass change plays the main role in C-V change in inversion region. Doping

density variation does not affect the variation of C-V due to uniaxial strain

application. On the other hand accumulation C-V is less changed by uniaxial
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strain than inversion C-V. Variation of extended state charge and accumulation

charge in different directions is found to be responsible for this. Extended state

charges are increased while accumulation charges are decreased with uniaxial

strain. These changes make total charge to be independent of strain. Thus

capacitance values are also independent of strain. Doping density change does

not play any role to affect the variation of C-V change with uniaxial strain.

4.2 Suggestion for Future Works

In this work only inversion and accumulation C-Vs for electrons are discussed.

Similarly C-Vs for holes can also be simulated. For Si valence band structure is

more complex than the conduction band. But accurate determination of band

splitting and effective mass change for heavy hole, light hole and split-off hole

can lead to simulation of hole C-Vs for different strain values.

Other than single gate MOS devices, that is used in this work, double gate

MOS devices are also emerging for integrated chips. This simulator can be

extended to double gate MOS devices, to simulate gate C-V characteristics

due to uniaxial strain application. On the other hand drain current is another

important characteristics for MOS devices. This one dimensional simulator

can be extended to two dimensional one to calculate drain current for different

strain conditions.
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